2012 年出现了这么一个互联网专用词:“剁手族”,意指“网购花钱太多,立誓再网购就剁手的人”。先不提剁手是不是真的能够控制住网购习惯,只看网购可以让消费者上瘾,正说明网购充分满足了消费者的需求,消费者对于网购的黏性也非常高。网购让消费者欲罢不能,除了价格公道、购买方便、选择众多以外,我觉得网络平台上“关联销售”的天然优势,也是一个重要原因。
关联销售,简单说就是引导客户在购买商品时,一次性地购买多种。我自己前天在某网站购物时,本来只想购买一条长裤,最后的订单中却包括了一条长裤、一双袜子和一条内裤。这就是商家利用“关联销售”的方法,引导客户购物的结果。相对于CYE传统零售渠道,网络销售平台在“关联销售”这一领域,可以玩的手段要多得多,也强大得多,这里主要讲3种常用招数,归纳为“诱惑”、“引导”、“理解”。
招数1:诱惑——捆绑优惠
捆绑优惠是指,当消费者按照一定的规则,购买两件及以上商品时才能享受到的优惠政策。
如上图所示为易迅的“随心配”模块,相机详情页中,显示一系列的捆绑优惠,只有在同时购买相机与其套装中设定的另外一件商品时,才能享受到价格折扣。类似的捆绑优惠在京东、天猫等处也可以见到。
捆绑优惠在线下渠道的使用也很常见,在超市中经常可以看到用黄色胶带捆绑在一起打折销售的商品组合。但是在网络平台上,捆绑优惠能够做得更好:
更直观:以上面易迅网的“随心配”为例,在一个不大的页面上,两件商品、折扣力度、最终价格都很明晰地展示了出来。而在线下渠道中,很难有这样普遍性而直观的方式,让客户了解到促销的具体内容。
更灵活:仍以“随心配”为例,可以看到对同一件商品,可以创建多种优惠套餐,消费者可以根据需要选择购买。这样的灵活度是线下很难达到的。
更快速:在网络平台中,可以很快速地创建出多个捆绑优惠套餐,消费者马上就能看到。例如:某厂家规定同时购买其生产的手机与蓝牙耳机就能够享受折扣。在网络平台上可以在半小时之内完成这一优惠的创建,而在线下,抛开系统设置不说,人员的培训、促销展示的制作也往往会耗时数天。
捆绑优惠这一招数,吸引消费者的是“优惠”,而将商品捆绑一起强行推销了出去。这一招可以归纳为:诱惑。
招数2:引导——相关搭配
搭配针对商品的自然属性,理解商品之间的相互关系,依据这一相互关系,引导消费者购买更多的商品。
由于搭配是基于商品之间的自然关系,消费者买单的几率会高很多。以京东商城的“推荐配件”模块为例,对于手机类产品,在这一模块中可以看到京东商城推荐的贴膜、保护套、电池、蓝牙耳机、充电器、数据线、移动电源、车载配件、耳机等其他种类商品。所推荐的其他商品,从商品类型上看,是与手机能够互相配合使用的。
相对于线下渠道,网络平台上搭配功能的主要优势在于:
更广泛:以上面京东商城的“推荐配件”模块为例,对一款手机,在这个模块中搭配出了10件其他的商品(如有必要还可以搭配更多),而这一模块可以应用于几乎所有商品上。而在线下渠道中,限于物理展示空间,不可能做到如此的广泛。
搭配这一招数,吸引消费者的是商品之间的自然关系,让消费者觉得搭配的商品也能用得着。这一招可以归纳为:引导。
引导和搭配这两招可以综合使用,效果更好。例如前面举例的易迅“随心配”模块,既有低价的诱惑,又有商品配件关系的引导,消费者自然更加满意。
引导和搭配这两招是网络平台从线下渠道继承并强化的。与线下所施展的招数相比,虽然威力更大,但其本质相同。而这第三招“推荐”则是线上平台所独有,线下渠道是学也学不来的。
招数3:理解——智能推荐
智能推荐是当前被炒得很热门的“大数据”的最常见应用形式之一,它对消费者在网络上的活动数据(包括浏览、购买、评价等)进行分析整理,判断消费者的行为特征,从而“智能”地为消费者推荐商品。
Amazon的智能推荐系统是为大家所熟知的,其首页上没有膏药般的促销信息,而是会根据每一位访问者的浏览记录、购买记录等为每一位消费者“个性化”生成推荐信息。而在商品详情页(itemdetailpage)中,也会根据商品的被购买记录计算出与其相关的商品。
On-lineFM站点也会使用智能推荐算法,向其听众推荐歌曲。例如豆瓣电台,用户对每一首歌都可以标记“喜欢”、“跳过”,而豆瓣电台在播放下一首歌时,会基于听众之前对每一首歌的操作,推荐听众最可能喜欢的歌曲。
智能推荐系统的算法是当前“大数据”方向的研究热点,粗略分其大类,有两种:
想认识全国各地的创业者、创业专家,快来加入“中国创业圈”
|